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The transient and steady state response of a very general non-linear oscillator subject to
a "nite number of parametric excitations is considered by the asymptotic perturbation
method. Three main cases are examined: (1) the parametric excitations frequencies are not
close to each other or close to the principal parametric resonance of the oscillator; (2) the
parametric excitations frequencies are close to each other but not close to the principal
resonance; and (3) all the parametric excitations frequencies are close to the principal
resonance. Both the conditions for the quenching of the oscillation and the conditions for its
persistence are determined. The main conclusion is that the oscillation in systems with one
degree of freedom cannot be fully quenched due to the action of parametric excitation,
because the only change is a shift in the oscillator frequencies. Analytical approximate
results are checked by numerical integration.
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1. INTRODUCTION

The transient and steady state response of a non-linear oscillator subject to a "nite number
of parametric excitations is considered. The relevant non-linear ordinary di!erential
equation is

XG (t)#(1#F (t))X (t)#aXQ (t)#bX2(t)#cX(t)XQ (t)

#dXQ 2(t)#eX3(t)#fXQ (t)X2(t)#gXQ 2 (t)X(t)#hXQ 3(t)"0, (1)

where the dots denote di!erentiation with respect to the non-dimensional time and F(t) is
a "nite sum of N harmonic parametric excitations of the form

F (t)"
N
+

m/1

2A
m

cos(X
m
t), (2)

where A
m

is the amplitude and X
m

is the non-dimensional frequency of the mth component
of F (t). (All times are referred to the time scale 1/u, where u is the natural frequency
of the linearized oscillator.) The general non-linear oscillator (1) can be self-excited for
some values of the linear and non-linear terms and its asymptotic behavior will be modi"ed
by the interaction between the multi-frequency parametric excitation and the
self-excitation.
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Only the case N'1 is considered and attention is especially devoted to the modi"cations
induced by the non-linear terms on the solution of the linearized and undamped version of
equation (1):

XG (t)#A1#
N
+

m/1

2A
m
cos(X

m
t)BX(t)"0, (3)

which is the well-known Mathieu equation [1}3]. For small values of the excitation
amplitudes A

m
, the solution of equation (3) can be written as a perturbative expansion

X (t)"2o
0
cos(!t#0

0
)#

N
+

m/1

2A
m
o
0

(X2
m
#2X

m
)
cos((X

m
#1)t!0

0
)

#

N
+

m/1

2A
m
o
0

(X2
m
!2X

m
)
cos((X

m
!1)t#0

0
)#O(A2

m
), (4)

where o
0
, 0

0
are "xed by the initial conditions and

X
m
"A2

m
/(4!X2

m
) . (5)

This solution is the sum of the free oscillation and the forced oscillation. It is essential to
discover if both the free oscillation, i.e., the "rst term of the right-hand side (r.h.s.) of
equation (4), and the forced oscillation will persist or decay (&&quenching''), when the
non-linear terms are active.

Equation (1) contains as particular cases well-known oscillators: the van der Pol
oscillator (a(0, f'0 and all the other parameters zero), the Du$ng oscillator (a, eO0
and all the other parameters zero) and so on.

In particular, the van der Pol oscillator and many other special cases have been studied
extensively for N"1 and N"2 [1}7]. Atallah and Geer used the method of multiple time
scales to study the van der Pol and the Du$ng oscillator with external excitations and
N'2 [8], but with no comparison with numerical results. Maccari [9] extended that
particular study to a more general oscillator and compared analytical and numerical
results. The most important "nding was that if the external excitation frequencies are not
close to the primary resonance frequency, the amplitude of the free oscillation will decay
exponentially in time, if the amplitude of the forcing term is su$ciently large, but will
otherwise approach a constant value.

The paper is organized as follows. In section 2, by using the asymptotic perturbation
method, the non-linear oscillator (1) is studied when the parametric excitations are not close
to each other and not close to the principal parametric resonance. In section 3 approximate
solutions are derived when the parametric excitations are close to each other, but not close
to the principal parametric resonance. Finally, in section 4 parametric excitations near the
principal resonance are considered.

The general approach is inspired by the asymptotic perturbation method [10}12] for
discrete dynamical systems and the formal perturbation solution is carried out to the lowest
order approximation. To the best of the author's knowledge, the parametrically excited
non-linear oscillator (1) has not been examined with multiple scales or harmonic balance
methods.

The results of this study can be judiciously applied to determine the transient and steady
state response of a non-linear oscillator subject to a virtually arbitrary signal, because it is
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well known that any signal over a speci"c time period can be approximated by a "nite
number of trigonometric terms.

The paper closes with some conclusions and directions for future work, in section 5.

2. PARAMETRIC EXCITATIONS NOT CLOSE TO EACH OTHER

In this section the parametric excitations are supposed to be not close to each other or
close to the principal resonance. Some approximate solutions are constructed by using the
asymptotic perturbation method. This method comes from a similar method employed in
non-linear partial di!erential equations and is based on the detailed computation of the
interaction of harmonic solutions of the linear part of the di!erential equation, because of
the presence of the non-linear terms.

By means of the temporal rescaling

q"e2t, (6)

attention is devoted to the asymptotic behavior of the solution: when tPRand eP0, then
q can assume "nite values.

The required solution of equation (1) can be expressed as a perturbation expansion, based
on the parameter e (a bookkeeping device that can be set equal to zero in the "nal analysis):

X(t)"[et
10

(q; e) exp(!it)#e2 (1
2
t
00

(q; e)#t
20

(q; e) exp(!2it))

#e3(t
30

(q; e) exp(!3it)#
N
+

m/1

t
1m

(q; e) exp(!it!iX
m
t)

#

N
+

m/1

t
1~m

(q; e) exp(!it#iX
m
t)#c.c.]#O (e4). (7)

Here c.c. stands for complex conjugate, t
np

(q, e)"t*
~n~p

(q, e), (n"1, 2; p"0, 1,2, N),
because X (t) is real (the asterisk denotes complex conjugate).

The function t
np

(q, e) depends on the parameter e and it is supposed that the limit of the
t
np
's for eP0 exists and is "nite. The expansion (7) can be substituted into the di!erential

equation (1) so as to obtain separate equations for each couple n, p and subsequently,
coe$cients of like powers of e are equated.

By using the asymptotic perturbation method the advantages of the harmonic balance
method (see equation (7)) and the multiple scales technique (see equation (6)) are
simultaneously taken into account. The method is constructive in a local sense, i.e., near an
equilibrium point of the oscillator, so that one can reconstruct the general motion of the
system.

With t(q), u
m
(q) indicating the limits of t

10
(q, e), t

1m
(q; e) when eP0, the following

equation is obtained for n"1, p"0:

2itqe3#iate3!(2b!ic)(t
0
te1`r#t

2
t*e3)!4dt

2
t*e3

!(3e!if!3ih#g) DtD2te3!
N
+

m/1

A
m
(u

m
#uJ

m
)"0. (8)
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For n"1, pO0, one obtained
(1#X

m
)2u

m
!u

m
!A

m
t"0, (9)

(1!X
m
)2u8

m
!u8

m
!A

m
t"0. (10)

For n"0, p"0 and n"2, p"0, equation (1) yields

t
0
"!2(b#d ) DtD2, t

2
"

(b!d!ic)

3
t2 , (11, 12)

while equations (9) and (10) yield

u
m
"

A
m

X2
m
#2X

m

t, u
~m

"

A
m

X2
m
!2X

m

t. (13)

Equations (11)}(13) can be substituted into equation (6) and thus the following model
equation is obtained:

tq"(a
1
#ia

2
)t#(b

1
#ib

2
) DtD2t. (14)

Here

a
1
"!

a

2
, a

2
"

N
+

m/1

A2
m

4!X2
m

, (15)

b
1
"

1

2Abc#
cd

3
!f!3hB, (16)

b
2
"

1

2 A
10

3
(b2#bd)#

c2#4d2

3
!3e!gB. (17)

By means of the standard substitution

t (q)"o(q) exp(i0(q)), (18)

equation (14) can be separated into two parts:

do
dq

"a
1
o#b

1
o3,

d0
dq

"a
2
#b

2
o2 . (19, 20)

The approximate solution that is good to the order of e2 is

X(t)"2o(t) cos(!t#0 (t))!2(b#d)o2 (t)

#

2

3
(b!d )o2 (t) cos(!2t#20 (t))#

2

3
cp2(t) sin(!2t#20 (t))

#

N
+

m/1
C
2A

m
o (t) cos((X

m
#1)t!0 (t))

(X2
m
#2X

m
)

#

2A
m
o (t) cos((X

m
!1)t#0 (t))

(X2
m
!2X

m
) D . (21)



PARAMETRIC NON-LINEAR OSCILLATORS 859
Note that the temporal evolution of o (q) does not depend on 0 (q) and then equation (19) can
be easily integrated:

o(q)"o
0CA1#

b
1
o2
0

a
1
B exp(!2a

1
q)!

b
1
o2
0

a
1
D
1@2

. (22)

From inspection of equation (22), it is easily deduced that o (q) diverges when

q"q
0
"A

1

2a
1
B logC

b
1
o2
0
#a

1
b
1
o2
0
D (23)

if b
1
'0, a

1
#b

1
o2
0
'0. Four cases can be distinguished:

(1) a
1
'0, b

1
'0. Stable equilibrium points do not exist and then the solution diverges

(obviously the approximation is not valid for q:q
0
).

(2) a
1
(0, b

1
(0. The origin is an asymptotically stable equilibrium point and o (q)

approaches zero as q goes to in"nity (&&quenching'' of the oscillation).
(3) a

1
'0, b

1
(0. o (q) approaches the stable equilibrium point

o
1
"(!a

1
/b

1
)1@2 (24)

and then the oscillation is always present. Unless the X
i
are all rational numbers, i.e.,

commensurable with u, the motion will be quasi-periodic; the asymptotic solution is

X(t)"2o
1
cos((1!u8 ) t)!2(b#d)o2

1

#

2

3
(b!d)o2

1
cos(2(1!uJ )t)#

2

3
co2

1
sin(2(1!uJ )t)

#

N
+

m/1
C
2A

m
o
1
cos((X

m
#1!uJ )t)

(X2
m
#2X

m
)

#

2A
m
o
1
cos((X

m
!1#u8 )t)

(X2
m
!2X

m
) D , (25)

where

uJ "a
2
#b

2
o2
1
. (26)

(4) a
1
(0, b

1
'0. The origin is a stable equilibrium point (&&quenching'' of the

oscillation) and the solution (24) exists but it is unstable. If o
0
'o

1
then the solution

diverges when q:q
0
.

The main conclusion of the above discussion is that the oscillation in systems governed
by equation (1) cannot be fully quenched by the parametric excitation (the coe$cients of the
various parametric excitations are present only in the term a

2
(see equation (15)). However,

the multi-frequency parametric excitation can modify the oscillator frequencies, as in
equations (25) and (26).

Numerical integration of equation (1) can be used to check the qualitative picture which
emerges from the preceding analysis. For example, the numerical solution compared with
the approximate solution (25) for case (3) is shown in Figure 1. The mean di!erence between
the two solutions is (0)0032), i.e., of order e3 as expected.



Figure 1. Comparison between numerical (rectangles) and analytical (circles) solutions in the (X, XQ "> ) plane.
Values of parameters: a"!0)01, b"1)5, c"!1)0, d"1)0, e"0)5, f"0)6, g"!0)5, h"1)0. Parametric
excitation frequencies not close to each other and not close to the principal resonance: X

1
"J3, X

2
"J5,

X
3
"J7. Amplitudes of the external excitations: A

1
"0)05, A

2
"0)03, A

3
"0)02.
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A physical example of the previous analysis can be furnished by the van der Pol oscillator
(a(0, f'0 and all other parameters zero). In this case, equations (15)}(17) yield

a
1
"!

a

2
, a

2
"

N
+

m/1

A2
m

4!X2
m

, (27)

b
1
"!

f

2
, b

2
"0. (28)

The van der Pol oscillator belongs to case (3): the oscillation is always present with
amplitude

o
1
"(!a/ f )1@2 , (29)

and the approximate asymptotic solution is

X(t)"2o
1
cos((1!u8 ) t)

#

N
+

m/1
C
2A

m
o
1
cos((X

m
#1!uJ )t)

(X2
m
#2X

m
)

#

2A
m
o
1
cos((1!X

m
!u8 )t)

(X2
m
!2X

m
) D , (30)
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where

uJ "
N
+

m/1

A2
m

4!X2
m

. (31)

The multi-frequency parametric excitation causes a shift u8 in the oscillator natural
frequency 1. This shift is proportional to the square of the amplitudes of the various
parametric excitations. On the other hand, the parametric components of the motions are
proportional to the amplitude o

1
of the fundamental oscillation.

3. THE APPROXIMATE SOLUTION WITH THE FREQUENCIES CLOSE
TO EACH OTHER

The results of the previous section can be extended to the case when the parametric
excitation frequencies are close to each other, but not close to the principal resonance.

The detunings p
m

can be introduced through the relation

X
m
"X#e2p

m
, m"1,2,N, (32)

where X is a "xed frequency not close to the principal resonance. The detunings p
m

measure
the di!erences of the frequencies from each other. By substituting equation (32) into
equation (2), the parametric excitation F (t) can be written as

F (t)"e
exp(iXt)

(1!X2)

N
+

m/1

A
m
exp(ie2p

m
q)#c.c.#O(e3). (33)

The non-linear oscillator is then subject to an applied force with frequency X and with an
amplitude that is a slowly varying function of time.

The same method as that in section 2 can be applied and equations (19) and (20) are again
obtained but now with

a
2
"

1

(1!X2)(4!X2)

N
+

m/1

A2
m
#

1

(1!X2)(4!X2)

N
+

m,n/1xmOny
A

m
A

n
exp(i(p

m
!p

n
)t), (34)

and a
1
, b

1
, b

2
unchanged. Also, in this case the evolution of o (q) does not depend on 0 (q),

but the di!erence now is that a
2

is explicitly dependent on q.
A simple integration shows that

0 (q)"0
0
#b

2 P
q

0

o2 (q@) dq@

#

1

(1!X2)(4!X2) Aq
N
+

m/1

A2
m
!i

N
+

m,n/1(mOn)

A
m
A

n

(exp(i(p
m
!p

n
)q)!1)

(p
m
!p

n
) B . (35)

The temporal evolution of o(q) is now exactly as in the previous section and the same
conclusions are valid for the quenching of the oscillation.

The behavior of 0 as q becomes large is important in case (3) of the previous section and
can be easily determined from equation (35). The asymptotic behavior is

0 (q)"uJ q#d (q), (36)



Figure 2. Associated map of the non-linear oscillator (1) with the parametric excitation frequencies close to each

other but not close to the principal resonance: X
1
"J3, X

2
"J3)1, X

3
"J3)2. Values of parameters:

a"!0)01, b"1)5, c"!1)0, d"1)0, e"0)5, f"0)6, g"!0)5, h"1)0. Amplitudes of the external excitations:
A

1
"0)05, A

2
"0)03, A

3
"0)02.
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where

uJ "b
2
o2
1
#

1

(1!X2)(4!X2)

N
+

m/1

A2
m

(37)

and d(q) indicates the oscillating part.
The approximate asymptotic solution is given by equation (25) but with 0 (q) as in

equation (36). While in the previous section the asymptotic motion of the solution is
quasi-periodic with a "nite number of frequencies, now, due to the oscillating part of 0 (q),
an in"nite number of frequencies are excited.

The associated map of the non-autonomous equation (1) obtained with the values (X(0),
>(0)), (X(¹), > (¹)), (X(2¹), > (2¹)),2, where ¹ is the period of the parametric excitation
(¹"2n/X), is shown in Figure 2. The numerical solution has been compared with the
approximate solution (but is not shown in the "gure). The mean di!erence between the two
solutions is 0)0036, i.e., of order e3 as expected.

4. PARAMETRIC EXCITATION FREQUENCIES NEAR PRINCIPAL RESONANCE

If the frequency of each component of the parametric excitation term is near the principal
resonant frequency of the oscillator, then

X
m
"2#e2p

m
, m"1,2, N, (38)
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where p
m

measures the di!erences of the frequencies from the principal resonance of the
oscillator. Upon using equation (38) in equation (2), the parametric excitation F(t) becomes

F (t)"e2 exp(2it)
N
+

m/1

A
m

exp(ie2p
m
q)#c.c. (39)

The non-linear oscillator is then subject to a parametric excitation with N di!erent
frequencies and amplitudes, which are supposed to be of order e2, because in this section
only the principal resonance zone is considered.

The approximate solution is in the form

X (t)"[et(q; e) exp(!it)#e2 (1
2
t
0
(q; e)#t

2
(q; e) exp(!2it))#c.c.]#O(e3), (40)

with the same conventions as in equation (7).
The solution (40) is substituted into equation (1) so as to obtain di!erent equations for

each n and subsequently coe$cients of like powers of e are equated. For n"1 the result is

2itq#iat!(2b!ic)(t
0
t#t

2
t*)!4 dt

2
t*

!(3e!i f!3ih#g) DtD2t#t*
N
+

m/1

A
m

exp(!ip
m
q)"0. (41)

The details of the calculation are not given and only the "nal results are furnished. By means
of the substitution (18), the equations for the amplitude and the phase are obtained,

do
dq

"a
1
o#b

1
o3#

o
2

N
+
i/1

A
i
sin (p

i
q#20 ), (42)

d0
dq

"b
2
o2#

1

2

N
+
i/1

A
i
cos (p

i
q#20 ), (43)

where a
1

and b
1
, b

2
are given by equations (15)}(17).

The di!erence with respect to the preceding cases is that now equations (42) and (43) are
two coupled non-linear di!erential equations, which must be integrated numerically.

However, a very interesting behavior is observed if a
1
'0 and b

1
(0 and

b
2
o2
1
A

N
+
i/1

DA
i
D , with o

1
"(!a

1
/b

1
)1@2, (44)

i.e., for weak parametric excitations. In this case, at least for initial conditions near o
1
, the

system (42) and (43) can be approximated by

do
dq

"!2a
1
(o!o

1
)#

o
1
2

N
+
i/1

A
i
sin (p

i
q#2XK q#20

0
), (45)

0 (q)"XK q#0
0
, (46)
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where XK "b
2
o2
1
. The solution of equation (45) is

o(t)"o
1
#o

0
exp(!2a

1
t)#

o
1
4

N
+

m/1

A
m
[4a

1
sin(XI

m
t#20

0
)!2XI

m
cos(XI

m
t#20

0
)#exp(!2a

1
t)(2XI

m
cos(20

0
)!4a

1
sin(20

0
)]

4a2
1
#XI 2

m

,

(47)

where o
0

is "xed by the initial conditions and

XI
m
"2XK #p

m
. (48)

The asymptotic behavior of equation (47) is

o (t)"o
1
#

o
1
4

N
+

m/1

A
m
[4a sin(XI

m
t#20

0
)!2XI

m
cos(XI

m
t#20

0
)]

4a2
1
#XI 2

m

(49)

and then the solution amplitude is slightly modulated with N di!erent frequencies
depending on the non-linear terms and parametric excitation frequencies.
Figure 3. Associated map of the non-linear oscillator (1) with the parametric excitation frequencies close to each
other and close to the principal resonance: X

1
"J1)3, X

2
"J1)2, X

3
"J1)1. Values of parameters: a"!0)01,

b"1)5, c"!1)0, d"1)0, e"0)5, f"0)6, g"!0)5, h"1)0. Amplitudes of the external excitations: A
1
"0)05,

A
2
"0)03, A

3
"0)02.
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The approximate solution that is good to the order of e2 is

X(t)"2o(t) cos((1!XI ) t#0
0
)!2(b#d )o2(t)

#

2

3
(b!d )o2(t) cos(2(1!XK )t#20

0
)#2

3
cp2 (t) sin(2(1!XK )t#20

0
), (50)

where o (t) is given by equation (49).
The associated map of the non-autonomous equation (1) obtained with the values (X(0),
>(0)), (X(¹), >(¹)), (X(2¹), > (2¹)),2, where ¹ is the period of the parametric excitation
(¹"n, X"2), is shown in Figure 3. The numerical solution has been compared with the
approximate solution (50) (but is not shown in the "gure). The mean di!erence between the
two solutions is 0)0033, i.e., of order e3 as expected.

5. CONCLUSIONS

The asymptotic perturbation method has been used to consider the transient and steady
state response of a general non-linear oscillator under a "nite number of harmonic
parametric excitations.

An important feature of this method is that it provides quantitative results regarding
dynamic behavior, in contrast to much of the current work in dynamical systems theory,
which is concerned with qualitative behavior.

Three di!erent cases are investigated and the corresponding analytical results are compared
to numerical simulations. If the parametric excitation frequencies are not close to each other or
close to the principal resonance, then the original oscillation can vanish (&&quenching'')
or maintain a "nite value, when non-linear terms are added. The multi-frequency parametric
excitation is only able to change the oscillator frequencies, because the quenching is
determined by some linear and non-linear terms (coe$cients a, b, c, d, f, h in equation (1)).

If the parametric excitations frequencies are all close to a particular frequency X, the
&&quenching'' is possible but in certain cases the oscillation is quasiperiodic with an in"nite
number of frequencies determined by the detuning parameters.

When the parametric excitation frequencies are close to the principal resonance
frequency, then both the amplitude and the phase of the oscillation can eventually oscillate
with a frequency that is determined by both the parametric excitation amplitudes A

i
and the

detuning parameters p
i
. Approximate analytical solutions can be derived in a particular

case, when the parametric excitations are very weak. The solution amplitude is slightly
modulated with N di!erent frequencies depending on the non-linear terms and the
parametric excitation frequencies.

A possible extension of the present study is given by the calculation of the second order
approximation solution. However, in this case the amount and complexity of the algebraic
computations required increase in a very dramatic manner and the use of symbolic
manipulation systems is strongly recommended.

Another extension can be the study of synchronization e!ects in two-degree-of-freedom
systems with multi-frequency parametric excitation. Previous papers have dealt mostly with
periodic solutions (synchronized or mode-locked states) in the presence of
a single-frequency parametric excitation.
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